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ACCOUNTING OF NUCLEON CORRELATIONS
FOR STUDY OF MOMENTUM DISTRIBUTIONS IN NUCLEI*

M.K.Gaidarovl, A.N.Antonovl, S.E.Massenz, G.S.Anagnostatos3

Nuclon momentum distributions of the 12C, 160, 4()Ca, 56Fe, 2%%Pb and some light neutron-
rich nuclei are calculated by a model using the natural orbital representation and the
experimental data for the momentum distribution of the “He nucleus. The model allows rea-
listic momentum distributions to be obtained using only hole-state natural orbitals or mean-
field single-particle wave functions as a good approximation to them. To demonstrate the
model, different sets of wave functions were employed and the predictions were compared
with the available empirical data and other theoretical results.

Yuer HYKJIOHHbIX KOppensuuii J/is H3ydeHHs
HMIIYJIbCHBIX pacnpeaeieHHi B sapax

M.K.I'aitoapoé u op.

Umnynscueie pacnpenesieHns HYKIOHOB B sapax 12c, 16, 40Ca, *Fe, P u 8 HEKOTOPBIX
JIETKHX HEATPOHHO-H3OLITOYHEIX SAPaX PACCYHTAHH! C MOMOILIBI0 MOJIENH, KOTOPA HCTIQNB3yYET
TIPEACTABICHAE ECTECTBEHHBIX OpOHTANIEH H IKCIIEPHMEHTANIbHBIE JaHHbIe 06 HMITYILCHOM pac-
npenentenny sapa *He. Mogens nossonser TIOSTYYHTh PEATHCTHYCCKHE HMITYTIbCHbIE pacipene-
JICHHSl, HCMONb3Y# TONBKO €CTECTBEHHBIC OPOHMT&IM ABPOMHBIX COCTOAHMIt JMGO oOZHO-
YaCTHYHbIE BOJHOBbIC QYHKIMH CPEIHEro Moax Kak xopoiee npubinxenne. YroSu mpone-
MOHCTPHPOBATh BO3MOXHOCTH MOJIEJIH, HCHOMB30BATTHCH PasHble KAGOPH BOMHOBKX (yHKLMI H
GBUIM NpOBENEHb CPABHEHUA C HMEIOUIMMNCH SKCIIEPHMEHTAIBHBIMM JAHHBIMH H ADYTHMH
TEOPETHYECKHMH Pe3yNIbTaTaMH.

1. Introduction

The systematic investigations of the nucleon momentum distributions in nuclei extend
the scope of the nuclear ground-state theory. The experimental situation in recent years
makes it possible to study quantities such as: the nucleon momentum distribution n(k)
which is specifically related to the processes like the (p, 2p), (e, €'p) and (e, €’) reactions, the

*The work is partly supported by the Bulgarian National Science Foundation under the Contracts
©-406 and 527

Unstitute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1784, Bulgaria

2Depanmcnt of Theoretical Physics, Aristotle University of Thessaloniki, Thessaloniki 54006, Greece

3nstitute of Nuclear Physics, NCSR «Demokritos», Aghia Paraskevi-Attiki, 15310, Greece



24 Gaidarov M.K. et al. Accounting of Nucleon Correlations

nuclear photoeffect, meson absorption by nuclei, inclusive proton production in proton-
nucleus collisions, and even some phenomena at low energies such as giant multipole
resonances.

The main characteristic feature of the nucleon momentum distribution obtained by
various correlation methods [1—7] is the existence of high-momentum components, for

momenta k> 2 fm™", due to the presence of short-range and tensor nucleon correlations. We
emphasize also the fact that theoretical results of the methods mentioned above as well as
experimental data for n(k) obtained by the y-scaling analysis of inclusive (e, ¢’) experiments
[8,9] confirm the conclusion that the high-momentum behaviour of the nucleon momentum

distribution (n(k)/A at k> 2 fm'l) is almost the same for nuclei with mass number A =2,
3, 4, 12, 16, 40, 56 and for nuclear matter (see [2], p.139). More generally, the above

property of n(k) is true for all nuclei with A 24, and *He is the lightest nuclear system that
exhibits the correlation effects via the high-momentum components of the nucleon momen-
tum distribution. Since the magnitude of the high-momentum tail is proportional to the
number of particles, this effect is associated with the nuclear interior rather than with the
nuclear surface. This allows us to suggest a practical method to calculate the nucleon

momentum distribution for nuclei heavier than *He (e.g., IZC, 16O, 4°Ca, 56Fe, and 208Pb)

from that one of *He which is already known from the experimental data. In general, the
knowledge of the momentum distribution for any nucleus is important for calculations of
cross sections of various kinds of nuclear reactions.

In the last years the light exotic nuclei with N/Z> 1 are studing very intensively. The
peculiarities of these nuclei start from N/Z =2 when a deviation from the shell-model

scheme of the nuclear levels is discovered (for instance, in llge nucleus). In nuclei with
N/Z=3 (sHe. llLi) the neutron «halo» and associated anomalously large rms radius are

observed. In the region N/Z=~2.5 (nucleus loLi) the nuclear structure is established as a
core of (A —1)-particles in the ground state plus loosely-bound extra neutron. These
peculiarities of the nuclei which have not been identified before show that the nuclear
physics began investigating regions of nuclei with new feature. This induces our
calculations on exotic nuclei momentum distribution based on the method suggested
recently [10].

2. The Model

The model uses the transparency of the single-particle picture existing within the
framework of the given correlation method by means of the natural orbital representation
[11], where the proton momentum distribution normalized to unity has the form:

n(k) =$ 2@+, R ]2 (1)
nlj

In (1) knlj (k) is the radial part of the natural orbital in the momentum space, anj is' the

natural occupation number for the state with quantum numbers (n, , J) and
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nlj

In the case of neutron momentum distribution Z has to be replaced by the number of the
neutrons N. It was shown by the Jastrow correlation method (JCM) [6] that the high-
momentum components of the total n(k) caused by short-range correlations are almost
completely determined by the contributions of the particle-state natural orbitals. This fact,
together with the approximate equality of the high-momentum tails of n(k) for all nuclei
with A 24, allows us to make the main assumption of this work, namely, that the particle-
state contributions to the momentum distributions are almost equal for all nuclei with
A 2 4. Using the equality, we obtain the following general relation of the correlated proton

momentum distribution of a nucleus (A, Z) with that one of the “He nucleus:

F

A
AZ s “He 1 . AZ 2 =%He 4012
Al =N| n e+ [z,,zz,-(sz"” | R0 |2 - ls/lelsm(k)l H 3)
where
. F,Z oz 4H -1
=| 1+ Y @+ DAy -x“;z , @)
nlj

and F AZ is the Fermi level for the nucleus (A, Z).

As shown in the previous papers the hole-state orbitals are almost unaffected by the
short-range correlations and, therefore, the functions Rn,]. (k) can be replaced by the shell-
model single-particle wave functions. The hole-state occupation numbers }wj are close to

unity within the JCM and we can set them equal to unity with good approximation. Thus
the correlated nucleon momentum distribution can be calculated for any nucleus by means

of the occupied shell-model wave functions and the momentum distribution of the “He
nucleus which is taken from the experimental data {8] and which contains short-range
correlation effects.

3. Calculations and Discussion

In this work we calculate the proton momentum distribution for nuclei 12C, 16O, 40Ca,
56Fe, 208pp, and the nucleon momentum distributions for the Li,Be, B, and C isotopes.
Empirical estimations for n(k) are available for nuclei 12C and 56Fc [8].

In our calculations of proton momentum distributions we use two types of MFA single-

particle wave functions: 1) single-particle wave functions obtained within the Hartree-Fock
method by using Skyrme effective forces and 2) multiharmonic oscillator single-particle
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Fig.1. Proton momentum distribution n(k) versus k of 12¢. Calculations
by using single-particle wave functions from the multiharmonic
oscillator shell model [13] are presented by solid line; and those by
using the Hartree—Fock single-particle wave functions, by long-dashed
line. The short-dashed line is n(k) calculated in the Jastrow correlation
method [6]. The solid triangles represent the data from [8]. The
normalization is: [ n(k) d3 = 1.
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Fig.2. Proton momentum distribution n(k) versus k of Spe, Calculations
by using single-particle wave functions from the multiharmonic
oscillator shell model [13] are presented by solid line; and those by
using the Hartree-Fock single-particle wave functions, by long-dashed

line. The solid triangles represent the empirical data from [8]. The
normalization is as in Fig.1.
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Fig.3. Proton momentum distribution in Li isotopes obtained by

using harmonic-oscillator s.p. wave functions with hw® defined by
Eq.(5). The normalization is as in Fig.1
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Fig.4. Neutron momentum distribution in Li isotopes obtained by

using harmonic-oscillator s.p. wave functions with h® defined by
Eq.(5). The normalization is as in Fig.1.
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wave functions (with different values of the oscillator parameter for each state) which lead
to a simultaneous description of ground-state radii and binding energies [12,13]. In addition
to [13], in our calculations the multiharmonic oscillator s.p. wave functions are
orthonormalized. In order to calculate the nucleon momentum distributions of the exotic
nuclei we use harmonic-oscillator single-particle wave functions with an oscillator
parameter which is A as well as N and Z dependent. This parameter gives, in principle, an
estimate of the lowest energy level spacing and its variation with the number of the
neutrons and protons. It represents also the average trend in the variation of the shape of
the self-consistent nucleon-nucleus potential as a function of N and Z. In [14] an expression
for hw as a function of N and Z is determined based on a formula for the nucleon charge
radius which was proposed in [15] reproducing well the experimentally available RMS
charge radii and the isotopic shifts of some even-even nuclei. It has the form:

Ao =38.64"1/3[1 +1.64647 - 0.191(N-2) A2, (5)

One can see from Figs.1 and 2 that the use of the single-particle wave functions from
the multiharmonic oscillator shell model leads to better description of the experimental data
for the central part of the momentum distribution than the use of the Hartree-Fock single-
particle wave functions. In both cases the main deviations from the experimental data are

for small momenta (k < 0.5 fm™). They are larger in the case when the Hartree-Fock s.p.
wave functions are used and this is a common feature of the results for all nuclei
considered. This is due to the well-known fact [16] that the Hartree-Fock method cannot

give a realistic wave function for the Is state in the “He nucleus. Namely this function

(;?l‘;l{;(k)) takes part in the expression for n(k) (Eq.(7)) in all nuclei. Both types of s.p. wave
functions, however, give similar results for the middle part as well as for the tail of the
momentum distribution in all cases considered. Concerning the exotic nuclei one can see
from Fig.3 that all Li isotopes have almost the same proton momentum distributions. The
small difference comes from the different values of Aw=#w(A, Z, N). The neutron
momentum distributions of the same isotopes are presented in Fig 4.

The comparison of the results obtained by using different mean-field single-particle
wave functions can be useful for the proper choice of the latter in the applications of the
model to practical calculations of n(k) in cases when the knowledge of this quantity is
necessary.

4. Summary

Suggesting a practical method for realistic calculations of the nucleon momentum
distribution in light, medium and heavy nuclei, we would like to test whether the high-
momentum tail of the momentum distribution for any nucleus can be approximated by that
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for “He. We also check to what extent this approximation affects the central part of the
momentum distribution. The numerical results in this work confirm to a great extent the
abilities of the suggested correlation model to give realistic estimations for the proton

momentum distribution in 12C and 56Ee and to predict the behaviour of n(k) in 16O, 40Ca,
and 2%%Pb nuclei. They are in agreement with the results for the proton momentum

distribution in 190 and “°Ca obtained within other theoretical methods in which the
correlation effects are incorporated using nuclear matter results and with some empirical

data for '*C and °Fe obtained using the y-scaling method. We also make predictions for
the proton and neutron momentum distributions of exotic nuclei. The knowledge of the
realistic momentum distributions obtained in this work would allow us to describe in a
similar way as it is done in [17] the quantities which are directly measurable in processes
of particle scattering by nuclei.
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